1 Z-Scores, CLT, LoLN

1.1 Concepts

1. In order to compute the probability $P(a \leq X \leq b)$ for a normal distribution, we need to take an integral $\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / \sigma^{2}}$ and this integral is almost impossible to do without a calculator. So, what we do is have a table of values for this integral and look up the value that we need. Given a z score such as 1.5 , when we look it up in the table, $z(1.5)=P(0 \leq Z \leq 1.5)$, where Z is the standard normal distribution; the bell curve with mean $\mu=0$ and standard deviation $\sigma=1$. To find how many standard deviations a value a is away from the mean, you can use the formula $\frac{|a-\mu|}{\sigma}$.
One key area these pop up in is when taking the average of a bunch of trials. For X_{i} independent and identically distributed (i.i.d.) (e.g. rolling a die multiple times) with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, the Central Limit Theorem (CLT) tells us that the average that we get (e.g. the average number that we roll)

- is approximately normal distributed (we can approximate probabilities with z scores)
- $\bar{\mu}=E[\bar{X}]=\mu$,
- $\bar{\sigma}=S E(\bar{X})=\sigma / \sqrt{n}$.

So

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is approximately normally distributed with $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
In general, you can think of it in this table:

X	The test score of a single student in $10 B$.
$\mu=E[X]$	The average test score of the students in 10B.
$\sigma=S E(X)=\sqrt{\operatorname{Var}(X)}$	The likelihood of a random student having a test score far away from the average μ.
$\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$	The average test score in a particular discussion section.
$\bar{\mu}=E[X]$	The average over all sections of the average test score of the section.
$\bar{\sigma}=S E(\bar{X})=\sqrt{\operatorname{Var}(\bar{X})}$	The likelihood of a random discussion section having an average test score far away from the average $\bar{\mu}$.

Note that putting a bar over the constants μ, σ, X just tells us that we are considering the μ, σ for the averaged random variable \bar{X}. Now the reason that $\mu=\bar{\mu}$ is because if you think about it, we are still taking the average over the same population (everyone in $10 B)$. The reason that $\bar{\sigma} \leq \sigma$ is because if we take the average test score of a particular section, if there are students with high scores, it is likely their score will cancel with students with lower scores. So, it is less likely that a section average will be far away from the class average.

In order to compute probabilities, we compute the z score. Given a normal distribution with mean μ and standard deviation σ, the z score of a value a is $\frac{|a-\mu|}{\sigma}$. Then we look up this value in a table.
The Law of Large Numbers is a weaker statement that just says that as we take averages and let $n \rightarrow \infty$, then the sample mean becomes closer and closer to the actual mean μ. Namely, $E[\bar{X}] \rightarrow \mu$ and the probability that we are far away from the mean goes to 0 . Mathematically, it says that for any fixed $\epsilon>0$, we have

$$
\lim _{n \rightarrow \infty} P(|\bar{X}-\mu|>\epsilon)=0
$$

1.2 Examples

2. Let f be normally distributed with mean -2 and standard deviation 4. Calculate the probability $P(-1 \leq X \leq 1)$.
3. Suppose you ask a group of 9 voters whether they voted for Romney or Obama and suppose that they are equally likely to have voted for either. Calculate the exact probability that less than a third of them voted for Romney. Use the CLT to approximate the probability that less than a third of them voted for Romney.

1.3 Problems

4. True False We can only use the z score to calculate probabilities of normal distributions (bell curves).
5. True False The normal distribution with positive mean can only take on positive values. $(P(X \leq 0)=0)$
6. True False You can use the Central Limit Theorem to prove the Law of Large Numbers.
7. True False Suppose I calculate that probability that in a sample of $10,000 \mathrm{men}$, their average height is less than 66 inches is 99.999%. Then all but one or two men in a sample of 10,000 men will have a height of less than 66 inches.
8. Let f be normally distributed with mean 1 and standard deviation 4. Calculate the probability $P(X \geq 3)$.
9. Let f be normally distributed with mean -2 and standard deviation 4. Calculate the probability $P(-3 \leq X \leq 1)$.
10. Suppose that on the most recent midterm, the average was 60 and the standard deviation 20. What is the approximate probability that a class of 25 had an average score of at least 66 ?
11. The newest Berkeley quarterback throws an average of 0.9 TDs/game with a standard deviation of 1 . What is the probability that he averages at least $1 \mathrm{TD} /$ game next season (16 total games)?
12. Suppose that the height of NBA players is distributed with an average height of 83 inches and a standard deviation of 10 inches. Taking a sample of 100 players, approximate the probability that the average of the heights of these 100 players is between 82 and 84 inches.
